Product description
เนื้อหาเชิงลึกในเล่มเต็มไปด้วยเทคนิคที่หาอ่านจากเล่มอื่นได้ยาก ครอบคลุมวิทยาการล่าสุดไม่ว่าจะเป็น Attention และ Transformer ซึ่งเป็นรากฐานของ ChatGPT ของ OpenAI และ Bard ของ Google, GAN โมเดลเรียนรู้จากฝ่ายตรงข้ามซึ่งเทรนด์ใหม่มาแรง, Diffusion Model ที่เป็นรากฐานให้กับ DALL-E 2 เนรมิตงานศิลป์ จินตนาการจากคำบรรยาย และที่ฮือฮาไปทั่วโลก Reinforcement Model ที่เป็นรากฐานของเกม AlphaGo และ AlphaZero ที่โค่นแชมป์โลก หมากล้อมและหมากรุก
เหมาะสำหรับใช้เป็นคู่มือเพิ่มไอเดียและประสบการณ์ระดับสูงให้กับนักพัฒนา นักวิจัยและผู้สนใจทั่วไปที่ต้องการสร้างโปรเจกต์ ML ที่ล้ำหน้า พร้อมทั้ง อธิบายสมการคณิตศาสตร์และทฤษฎีที่สำคัญ ช่วยให้ศึกษาต่อหรือเรียนรู้งานวิจัยทั่วโลกได้ง่ายขึน้ โดยใช้ภาษา Python และ เฟรมเวิร์คยอดนิยมที่พร้อมสำหรับงานจริง อย่างเช่น Scikit-Learn, Keras และ TensorFlow
ลองใช้ Scikit-Learn สร้างโปรเจกต์ ML ตั้งแต่เริ่มจนจบ ใช้ Keras และ TensorFlow เพื่อฝึกและคาดการณ์แบบกระจายงานบนหลาย GPU หรือหลายเซิร์ฟเวอร์ ทดลองการทำงานทั้ง บนเครื่องส่วนตัวและบนคลาวด์
สำรวจโมเดลมากมาย เช่น Support Vector Machine, Decision Tree, Random Forest และกลุ่มโมเดล (ensemble)
ใช้ประโยชน์จากเทคนิคการเรียนรู้แบบไม่มีผู้สอน เช่น การลดมิติ (dimensionality reduction), การจัดกลุ่ม (clustering) และการตรวจจับความผิดปกติ (anomaly detection)
ลงลึกสถาปัตยกรรมทันสมัยล่าสุด GAN: Generative Adversarial Networks, Autoencoders, Diffusion Models และ Transformers ที่กำลังเป็นกระแสจาก ChatGPT
ใช้ TensorFlow และ Keras เพื่อสร้างและฝึกนิวรอลเน็ตสำหรับคอมพิวเตอร์วิชั่น, การประมวลผลภาษาธรรมชาติ, เจนเนอเรทีฟโมเดล และดีฟ-รีอินฟอร์ซเมนต์เลิร์นนิ่ง